Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization.

نویسندگان

  • Pierre Pouponneau
  • Jean-Christophe Leroux
  • Sylvain Martel
چکیده

In this work, therapeutic magnetic micro carriers (TMMC) guided in real time by a magnetic resonance imaging (MRI) system are proposed as a mean to improve drug delivery to tumor sites. MRI steering constraints and physiological parameters for the chemoembolization of liver tumors were taken into account to design magnetic iron-cobalt nanoparticles encapsulated into biodegradable poly(d,l-lactic-co-glycolic acid) (PLGA) microparticles with the appropriate saturation magnetization (M(s)). FeCo nanoparticles displayed a diameter of 182nm and an M(s) of 209 emicrog(-1). They were coated with a multilayered graphite shell to minimize the reduction of M(s) during the encapsulation steps. FeCo-PLGA microparticles, with a mean diameter of 58 microm and an M(s) of 61emicrog(-1), were steered in a phantom mimicking the hepatic artery and its bifurcation, with a flow in the same order of magnitude as that of the hepatic artery flow. The steering efficiency, defined as the amount of FeCo-PLGA microparticles in the targeted bifurcation channel divided by the total amount of FeCo-PLGA microparticles injected, reached 86%. The data presented in this paper confirms the feasibility of the steering of these TMMC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation.

Magnetic tumor targeting with external magnets is a promising method to increase the delivery of cytotoxic agents to tumor cells while reducing side effects. However, this approach suffers from intrinsic limitations, such as the inability to target areas within deep tissues, due mainly to a strong decrease of the magnetic field magnitude away from the magnets. Magnetic resonance navigation (MRN...

متن کامل

Iron-gold (Fe2O3@Au) core-shell nano-theranostic for magnetically targeted photothermal therapy under magnetic resonance imaging guidance

Introduction: Photothermal therapy (PTT) is a nanotechnology-assisted cancer hyperthermia approach in which the interaction between laser light and plasmonic nanoparticles generates a localized heating for thermoablation of the tumor. Recent efforts in the area of PTT follow two important aims: (i) exploitation of targeting strategies for preferential accumulation of plasmonic ...

متن کامل

A New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).

Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity.   Materials ...

متن کامل

ANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST

Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...

متن کامل

Multifunctional MIL-S─CUR@FC nanoparticles: a targeted theranostic agent for magnetic resonance imaging and tumor targeted delivery of curcumin

Introduction: Noninvasive magnetic resonance imaging (MRI) and targeted drug delivery systems, usually referred to as theranostic agents, are being developed to enable detection, site-specific treatment, and long-term monitoring.   Materials and Methods: To elucidate the effects of coating on cellular uptake and biodistribution of n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 30 31  شماره 

صفحات  -

تاریخ انتشار 2009